Sharp approximation theorems and Fourier inequalities in the Dunkl setting

Autor/a

Gorbachev, D.V.

Ivanov, V.I.

Tikhonov, S.Y.

Data de publicació

2020-01-01



Resum

In this paper we study direct and inverse approximation inequalities in Lp(Rd), 1<p<∞, with the Dunkl weight. We obtain these estimates in their sharp form substantially improving previous results. We also establish new estimates of the modulus of smoothness of a function f via the fractional powers of the Dunkl Laplacian of approximants of f. Moreover, we obtain new Lebesgue type estimates for moduli of smoothness in terms of Dunkl transforms. Needed Pitt-type and Kellogg-type Fourier–Dunkl inequalities are derived. © 2020 Elsevier Inc.

Tipus de document

Article
Versió publicada

Llengua

Anglès

Paraules clau

51

Pàgines

30 p.

Publicat per

Academic Press Inc.

Documents

1-s2.0-S0021904520300988-mainMaRcAt.pdf

539.1Kb

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]