A bivariant theory for the Cuntz semigroup

Autor/a

Bosa, J.

Tornetta, G.

Zacharias, J.

Fecha de publicación

2019-01-01



Resumen

We introduce a bivariant version of the Cuntz semigroup as equivalence classes of order zero maps generalizing the ordinary Cuntz semigroup. The theory has many features formally analogous to KK-theory including a composition product. We establish basic properties, like additivity, stability and continuity, and study categorical aspects in the setting of local C⁎-algebras. We determine the bivariant Cuntz semigroup for numerous examples such as when the second algebra is a Kirchberg algebra, and Cuntz homology for compact Hausdorff spaces which provides a complete invariant. Moreover, we establish identities when tensoring with strongly self-absorbing C⁎-algebras. Finally, we show how to use the bivariant Cuntz semigroup of the present work to classify unital and stably finite C⁎-algebras. © 2019 The Authors

Tipo de documento

Artículo
Versión publicada

Lengua

Inglés

Palabras clave

51

Páginas

37 p.

Publicado por

Academic Press Inc.

Documentos

BoToZa2016MaRcAt.pdf

463.2Kb

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]