Use this identifier to quote or link this document:

Potential of deep learning segmentation for the extraction of archaeological features from historical map series
Garcia i Molsosa, Arnau; Orengo Romeu, Hector A.; Lawrence, Dan; Philip, Graham; Hopper, Kristen; Petrie, Cameron A.
Historical maps present a unique depiction of past landscapes, providing evidence for a wide range of information such as settlement distribution, past land use, natural resources, transport networks, toponymy and other natural and cultural data within an explicitly spatial context. Maps produced before the expansion of large-scale mechanized agriculture reflect a landscape that is lost today. Of particular interest to us is the great quantity of archaeologically relevant information that these maps recorded, both deliberately and incidentally. Despite the importance of the information they contain, researchers have only recently begun to automatically digitize and extract data from such maps as coherent information, rather than manually examine a raster image. However, these new approaches have focused on specific types of information that cannot be used directly for archaeological or heritage purposes. This paper provides a proof of concept of the application of deep learning techniques to extract archaeological information from historical maps in an automated manner. Early twentieth century colonial map series have been chosen, as they provide enough time depth to avoid many recent large-scale landscape modifications and cover very large areas (comprising several countries). The use of common symbology and conventions enhance the applicability of the method. The results show deep learning to be an efficient tool for the recovery of georeferenced, archaeologically relevant information that is represented as conventional signs, line-drawings and text in historical maps. The method can provide excellent results when an adequate training dataset has been gathered and is therefore at its best when applied to the large map series that can supply such information. The deep learning approaches described here open up the possibility to map sites and features across entire map series much more quickly and coherently than other available methods, opening up the potential to reconstruct archaeological landscapes at continental scales.
Agència de Gestió d'Ajuts Universitaris i de Recerca. Grant Number: 2018 BP 00208 H2020 European Research Council. Grant Number: GA648609 H2020 Marie Skłodowska-Curie Actions. Grant Number: GA746446
90 - Arqueologia. Prehistòria
Aprenentatge automàtic -- Arqueologia
© 2021 The Authors. Archaeological Prospection published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
13 p.
Article - Published version
1099-0763 (Online ISSN)
John Wiley & Sons Ltd.
Archaeological Prospection, 2021; 1 - 13

Full text files in this document

Files Size Format
2020-Potential- ... eatures-historical-map.pdf 3.022 MB PDF

Show full item record

Related documents

Other documents of the same author

Petrie, Cameron A.; Orengo Romeu, Hector A.; Green, Adam S.; Walker,  Joanna R.; Garcia i Molsosa, Arnau; Conesa, Francesc C.; Knox, J. Robert; Singh, Ravindra N.
Orengo Romeu, Hector A.; Conesa; Garcia i Molsosa, Arnau; Lobo, Agustín; Green, Adam S.; Madella, Marco; Petrie, Cameron A.
Green, Adam S.; Orengo Romeu, Hector A.; Alam, Aftab; Garcia i Molsosa, Arnau; Green, Lillian M.; Conesa, Francesc C.; Ranjan, Amit; Singh, Ravindra N.; Petrie, Cameron A.
Palet i Martínez, Josep M.; Julià Brugués, Ramón; Riera i Mora, Santiago; Ejarque, Ana; Orengo Romeu, Hector A.; Miras, Yannick; Garcia i Molsosa, Arnau; Allée, Philippe; Reed, Jane M.; Marco, Javier; Marqués, Maria Àngels; Furdada i Bellavista, Glòria; Montaner, Jordi, 1964-