Chaotic Dynamics at the Boundary of a Basin of Attraction via Non-transversal Intersections for a Non-global Smooth Diffeomorphism

Autor/a

Fontich, E.

Garijo, A.

Jarque, X.

Data de publicació

2024-09-11



Resum

In this paper, we give analytic proofs of the existence of transversal homoclinic points for a family of non-globally smooth diffeomorphisms having the origin as a fixed point which come out as a truncated map governing the local dynamics near a critical period three-cycle associated with the Secant map. Using Moser’s version of Birkhoff–Smale’s theorem, we prove that the boundary of the basin of attraction of the origin contains a Cantor-like invariant subset such that the restricted dynamics to it is conjugate to the full shift of N-symbols for any integer N ≥ 2 or infinity.

Tipus de document

Article

Versió del document

Versió publicada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Secant map; Basin of attraction; Stable and unstable manifold; Homoclinic connection; Periodic points; Symbolic dynamics

Pàgines

32 p.

Publicat per

Springer

És versió de

Journal of Nonlinear Science

Documents

Chaotic-Dynamics-at-the-Boundary-of-a-Basin-of-Attraction.pdf

764.7Kb

 

Drets

(c) 2024 The Author(s)

Attribution 4.0 International

(c) 2024 The Author(s)

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]