Motivic congruences and Sharifi's conjecture

Autor/a

Rivero, O.

Rotger, V.

Fecha de publicación

2024-12-06



Resumen

Let f be a cuspidal eigenform of weight two and level N , let p N be a prime at which f is congruent to an Eisenstein series and let V(f )denote the p-adic Tate module off. Beilinson constructed a class kappa f is an element of H-1(Q,Vf(1)) arising from the cup product of two Siegel units and proved a striking relationship with the first derivative L '(f, 0) at the near central point s = 0 of the L-series of f , which led him to formulate his celebrated conjecture. In this note we prove two congruence formulae relating the motivic part of L '(f, 0) ( mod p) and L ''(f, 0) ( mod p) with circular units. The proofs make use of delicate Galois properties satisfied by various integral lattices within V(f )and exploits Perrin-Riou's, Coleman's and Kato's work on the Euler systems of circular units and Beilinson-Kato elements and, most crucially, the work of Sharifi, Fukaya-Kato, and Ohta.

Tipo de documento

Artículo

Versión del documento

Versión aceptada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Motivic Congruences

Páginas

22 p.

Publicado por

Johns Hopkins University Press

Es versión de

American Journal of Mathematics

Documentos

Motivic congruences and Sharifi's conjecture.pdf

335.8Kb

 

Derechos

Attribution 4.0 International

Attribution 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]