Boundary dynamics in unbounded Fatou components

Autor/a

Jové, Anna

Fagella, Núria ORCID

Fecha de publicación

2025-02-11



Resumen

We study the behaviour of a transcendental entire map f : C-+ C on an unbounded invariant Fatou component U, assuming that infinity is accessible from U. It is well-known that U is simply connected. Hence, by means of a Riemann map phi: D-+ U and the associated inner function g := phi-1 degrees f degrees phi, the boundary of U is described topologically in terms of the disjoint union of clusters sets, each of them consisting of one or two connected components in C, improving the results in (see Baker and Dom & imath;nguez [Ann. Acad. Sci. Fenn. Math. 24 (1999), pp. 437-464]; Bargmann [Cambridge Univ. Press, Cambridge, 2008]). Moreover, under mild assumptions on the location of singular values in U (allowing them even to accumulate at infinity, as long as they accumulate through accesses to infinity), we show that periodic and escaping boundary points are dense in partial derivative U, and that all periodic boundary points accessible from U. Finally, under similar conditions, the set of singularities of g is shown to have zero Lebesgue measure, strengthening substantially the results (see Evdoridou et al. [J. Math. Anal. Appl. 477 (2019), pp. 536-550; Arnold Math. J. 6 (2020), pp. 459-493]).

Tipo de documento

Artículo

Versión del documento

Versión aceptada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Fatou components

Páginas

42 p.

Publicado por

American Mathematical Society

Es versión de

Transactions of the American Mathematical Society

Documentos

Boundary dynamics in unbounded Fatou components.pdf

11.04Mb

 

Derechos

Attribution-NonCommercial-NoDerivatives 4.0 International

Attribution-NonCommercial-NoDerivatives 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]