Holomorphic motions, natural families of entire maps, and multiplier-like objects for wandering domains

Autor/a

Ferreira, Gustavo R.

van Strien, Sebastian

Fecha de publicación

2025-02-15



Resumen

Structural stability of holomorphic functions has been the subject of much research in the last fifty years. Due to various technicalities, however, most of that work has focused on so-called finite-type functions (functions whose set of singular values has finite cardinality). Recent developments in the field go beyond this setting. In this paper we extend Eremenko and Lyubich's result on natural families of entire maps to the case where the set of singular values is not the entire complex plane, showing under this assumption that the set Mf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_f$$\end{document} of entire functions quasiconformally equivalent to f admits the structure of a complex manifold (of possibly infinite dimension). Moreover, we will consider functions with wandering domains-another hot topic of research in complex dynamics. Given an entire function f with a simply connected wandering domain U, we construct an analogue of the multiplier of a periodic orbit, called a distortion sequence, and show that, under some hypotheses, the distortion sequence moves analytically as f moves within appropriate parameter families.

Tipo de documento

Artículo

Versión del documento

Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Mathematics

Páginas

32 p.

Publicado por

Springer

Es versión de

Mathematische Annalen

Documentos

Holomorphicmotions natural families of entiremaps.pdf

532.5Kb

 

Derechos

Attribution 4.0 International

Attribution 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]