Hydrodynamic and symbolic models of computation with advice

Autor/a

Cardona, R.

Data de publicació

2024-11-11



Resum

Dynamical systems and physical models defined on idealized continuous phase spaces are known to exhibit non-computable phenomena; examples include the wave equation, recurrent neural networks, or Julia sets in holomorphic dynamics. Inspired by the works of Moore and Siegelmann, we show that ideal fluids, modeled by the Euler equations, are capable of simulating poly-time Turing machines with polynomial advice on compact three-dimensional domains. This is precisely the complexity class P =poly considered by Siegelmann in her study of analog recurrent neural networks. In addition, we introduce a new class of symbolic systems, related to countably piecewise linear transformations of the unit square, that is capable of simulating Turing machines with advice in real-time, contrary to previously known models.

Tipus de document

Article

Versió del document

Versió publicada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Computable analysis; Dynamical complexity; Hydrodynamics; Models of computation

Pàgines

26 p.

Publicat per

European Mathematical Society Publishing House

És versió de

Revista Matematica Iberoamericana

Documents

Hydrodynamic and symbolic models of computation with advice.pdf

521.0Kb

 

Drets

Attribution 4.0 International

Attribution 4.0 International

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]