Examples of optimal Hölder regularity in semilinear equations involving the fractional Laplacian

Autor/a

Csato, Gyula ORCID

Mas Blesa, Albert

Fecha de publicación

2025-06-01



Resumen

We discuss the Hölder regularity of solutions to the semilinear equation involving the fractional Laplacian (−Δ)su=f(u) in one dimension. We put in evidence a new regularity phenomenon which is a combined effect of the nonlocality and the semilinearity of the equation, since it does not happen neither for local semilinear equations, nor for nonlocal linear equations. Namely, for nonlinearities f in Cβ and when 2s+β<1, the solution is not always C2s+β−ϵ for all ϵ>0. Instead, in general the solution u is at most C2s/(1−β).

Tipo de documento

Artículo

Versión del documento

Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Fractional Laplacian; Hölder regularity; Semilinear equations

Páginas

13 p.

Publicado por

Elsevier

Es versión de

Nonlinear Analysis, Theory, Methods and Applications

Documentos

Examples of optimal Hölder regularity in semilinear equations involving the fractional Laplacian.pdf

848.4Kb

 

Derechos

Attribution 4.0 International

Attribution 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]