Towards a Fluid Computer

Autor/a

Cardona, R.

Miranda, E.

Peralta-Salas, D.

Fecha de publicación

2025-03-13



Resumen

In 1991, Moore (Nonlinearity 4:199–230, 1991) raised a question about whether hydrodynamics is capable of performing computations. Similarly, in 2016, Tao (J Am Math Soc 29(3):601–674, 2016) asked whether a mechanical system, including a fluid flow, can simulate a universal Turing machine. In this expository article, we review the construction in Cardona et al. (Proc Natl Acad Sci 118(19):e2026818118, 2021) of a “Fluid computer” in dimension 3 that combines techniques in symbolic dynamics with the connection between steady Euler flows and contact geometry unveiled by Etnyre and Ghrist. In addition, we argue that the metric that renders the vector field Beltrami cannot be critical in the Chern-Hamilton sense (Chern and Hamilton in On Riemannian metrics adapted to three-dimensional contact manifolds, Springer, Berlin, 1985). We also sketch the completely different construction for the Euclidean metric in R3 as given in Cardona et al. (J Math Pures Appl 169:50–81, 2023). These results reveal the existence of undecidable fluid particle paths. We conclude the article with a list of open problems.

Tipo de documento

Artículo

Versión del documento

Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Beltrami fields; Computational complexity; Euler equations; Turing completeness; Turing machines; Universality

Páginas

17 p.

Publicado por

Springer

Es versión de

Foundations of Computational Mathematics

Documentos

Towards a Fluid Computer.pdf

604.0Kb

 

Derechos

© The Author(s) 2025.

Attribution 4.0 International

© The Author(s) 2025.

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]