Towards a Fluid Computer

Autor/a

Cardona, R.

Miranda, E.

Peralta-Salas, D.

Data de publicació

2025-03-13



Resum

In 1991, Moore (Nonlinearity 4:199–230, 1991) raised a question about whether hydrodynamics is capable of performing computations. Similarly, in 2016, Tao (J Am Math Soc 29(3):601–674, 2016) asked whether a mechanical system, including a fluid flow, can simulate a universal Turing machine. In this expository article, we review the construction in Cardona et al. (Proc Natl Acad Sci 118(19):e2026818118, 2021) of a “Fluid computer” in dimension 3 that combines techniques in symbolic dynamics with the connection between steady Euler flows and contact geometry unveiled by Etnyre and Ghrist. In addition, we argue that the metric that renders the vector field Beltrami cannot be critical in the Chern-Hamilton sense (Chern and Hamilton in On Riemannian metrics adapted to three-dimensional contact manifolds, Springer, Berlin, 1985). We also sketch the completely different construction for the Euclidean metric in R3 as given in Cardona et al. (J Math Pures Appl 169:50–81, 2023). These results reveal the existence of undecidable fluid particle paths. We conclude the article with a list of open problems.

Tipus de document

Article

Versió del document

Versió publicada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Beltrami fields; Computational complexity; Euler equations; Turing completeness; Turing machines; Universality

Pàgines

17 p.

Publicat per

Springer

És versió de

Foundations of Computational Mathematics

Documents

Towards a Fluid Computer.pdf

604.0Kb

 

Drets

© The Author(s) 2025.

Attribution 4.0 International

© The Author(s) 2025.

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]