An Algorithm to Detect Endangered Cultural Heritage by Agricultural Expansion in Drylands at a Global Scale

dc.contributor.author
Conesa, Francesc C.
dc.contributor.author
Orengo Romeu, Hector A.
dc.contributor.author
Lobo, Agustín
dc.contributor.author
Petrie, Cameron A.
dc.date.accessioned
2023-01-13T07:25:17Z
dc.date.accessioned
2024-10-29T10:42:54Z
dc.date.available
2023-01-13T07:25:17Z
dc.date.available
2024-10-29T10:42:54Z
dc.date.created
2022-11-22
dc.date.issued
2022-12-22
dc.identifier.issn
2072-4292
dc.identifier.uri
http://hdl.handle.net/2072/530076
dc.description.abstract
This article presents AgriExp, a remote-based workflow for the rapid mapping and monitoring of archaeological and cultural heritage locations endangered by new agricultural expansion and encroachment. Our approach is powered by the cloud-computing data cataloguing and processing capabilities of Google Earth Engine and it uses all the available scenes from the Sentinel-2 image collection to map index-based multi-aggregate yearly vegetation changes. A user-defined index threshold maps the first per-pixel occurrence of an abrupt vegetation change and returns an updated and classified multi-temporal image aggregate in almost-real-time. The algorithm requires an input vector table such as data gazetteers or heritage inventories, and it performs buffer zonal statistics for each site to return a series of spatial indicators of potential site disturbance. It also returns time series charts for the evaluation and validation of the local to regional vegetation trends and the seasonal phenology. Additionally, we used multi-temporal MODIS, Sentinel-2 and high-resolution Planet imagery for further photo-interpretation of critically endangered sites. AgriExp was first tested in the arid region of the Cholistan Desert in eastern Pakistan. Here, hundreds of archaeological mound surfaces are threatened by the accelerated transformation of barren lands into new irrigated agricultural lands. We have provided the algorithm code with the article to ensure that AgriExp can be exported and implemented with little computational cost by academics and heritage practitioners alike to monitor critically endangered archaeological and cultural landscapes elsewhere.
eng
dc.description.sponsorship
F.C.C. is a Beatriu de Pinós Fellow (2020-BP-00203) and, together with H.A.O., he conceived this research as a Juan de la Cierva-Incorporación Fellow (IJC2018-038319-I, Spanish Ministry of Science, Innovation and Universities) as a result of his Marie Sklodowska-Curie Action fellowship held at the University of Cambridge (MarginScapes, no. 794711). C.A.P. coordinates the Arcadia Foundation-funded project Mapping Archaeological Heritage in South Asia (MAHSA, University of Cambridge) and was also the PI on the ERC-funded TwoRains project (no. 648609).
eng
dc.format.extent
19 p.
cat
dc.language.iso
eng
cat
dc.publisher
MDPI
cat
dc.relation.ispartof
Remote Sens. 2023, 15, 53.
cat
dc.relation.isreferencedby
https://doi.org/10.34810/data600
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: Reconeixement 4.0 Internacional
dc.rights
© 2022 by the authors.Licensee MDPI, Basel, Switzerland.
dc.rights.uri
https://creativecommons.org/licenses/by/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Dades massives
cat
dc.subject.other
Arqueologia -- Teledetecció
cat
dc.subject.other
Algorismes computacionals
cat
dc.title
An Algorithm to Detect Endangered Cultural Heritage by Agricultural Expansion in Drylands at a Global Scale
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.subject.udc
90
cat
dc.embargo.terms
cap
cat
dc.identifier.doi
https://doi.org/10.3390/rs15010053
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documentos

2022-algorithm-detect-endangered-cultural-heritage-agricultural-expansion.pdf

9.606Mb PDF

Este ítem aparece en la(s) siguiente(s) colección(ones)