The bicircular model is a periodic time-dependent perturbation of the Earth–Moon restricted three-body problem that includes the direct gravitational effect of the Sun on the infinitesimal particle. In this paper, we focus on the dynamics in the neighbourhood of the 𝐿1 point of the Earth–Moon system. By means of a periodic time-dependent reduction to the centre manifold, we show the existence of two families of quasi-periodic Lyapunov orbits, one planar and one vertical. The planar Lyapunov family undergoes a (quasi-periodic) pitchfork bifurcation giving rise to two families of quasi-periodic halo orbits. Between them, there is a family of Lissajous quasi-periodic orbits, with three basic frequencies.
English
52 - Astronomy. Astrophysics. Space research. Geodesy
Astrofísica
26 p.
Springer
Celestial Mechanics and Dynamical Astronomy
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-sa/4.0/
CRM Articles [656]