The vicinity of the Earth–Moon L1 point in the bicircular problem

Author

Jorba, À.

Jorba-Cuscó, M.

Rosales, J.J.

Publication date

2020-02-07



Abstract

The bicircular model is a periodic time-dependent perturbation of the Earth–Moon restricted three-body problem that includes the direct gravitational effect of the Sun on the infinitesimal particle. In this paper, we focus on the dynamics in the neighbourhood of the 𝐿1 point of the Earth–Moon system. By means of a periodic time-dependent reduction to the centre manifold, we show the existence of two families of quasi-periodic Lyapunov orbits, one planar and one vertical. The planar Lyapunov family undergoes a (quasi-periodic) pitchfork bifurcation giving rise to two families of quasi-periodic halo orbits. Between them, there is a family of Lissajous quasi-periodic orbits, with three basic frequencies.

Document Type

Article
Published version

Language

English

CDU Subject

52 - Astronomy. Astrophysics. Space research. Geodesy

Subject

Astrofísica

Pages

26 p.

Publisher

Springer

Version of

Celestial Mechanics and Dynamical Astronomy

Documents

VicinityEarth.pdf

3.475Mb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-sa/4.0/

This item appears in the following Collection(s)

CRM Articles [656]