dc.contributor.author
Attak, Hamza
dc.contributor.author
Combalia, Marc
dc.contributor.author
Gardikis, Georgios
dc.contributor.author
Gaston, Bernat
dc.contributor.author
Jacquin, Ludovic
dc.contributor.author
Litke, Antonis
dc.contributor.author
Papadakis, Nikolaos K.
dc.contributor.author
Papadopoulos, Dimitris
dc.contributor.author
Pastor, Antonio
dc.date.accessioned
2023-02-28T11:18:30Z
dc.date.accessioned
2024-09-20T08:13:42Z
dc.date.available
2023-02-28T11:18:30Z
dc.date.available
2024-09-20T08:13:42Z
dc.date.issued
2018-11-19
dc.identifier.uri
http://hdl.handle.net/2072/531537
dc.description.abstract
SHIELD is a distributed cyber-security system that leverages Network Function Virtualisation for dynamically deploying virtual Network Security Functions. The security functions send network traffic’s monitoring data to a bigdata store. The Data Analysis and Remediation Engine executes security analytics modules on top of monitoring data modules in order to detect threats. The security analytics heavily leverage Machine Learning algorithms for detecting anomalies and classifying threats. This paper presents the different Machine Learning algorithms and details the obtained results and the direction taken by the project with regards to its implementation, including business capabilities for the cybersecurity solution.
eng
dc.format.extent
17 p.
cat
dc.relation.ispartof
Computer & Electronics Security Applications Rendez-vous (C&ESAR), Rennes, 2018.
cat
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Xarxes d'àrea extensa (Ordinadors)
cat
dc.subject.other
Distributed Artificial Intelligence
cat
dc.subject.other
Security
cat
dc.subject.other
Cybersecurity
cat
dc.subject.other
Artificial Intelligence & Big Data
cat
dc.subject.other
Network Functions Virtualisation
cat
dc.title
Application of distributed computing and machine learning technologies to cybersecurity
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.identifier.doi
https://zenodo.org/badge/DOI/10.5281/zenodo.3266038.svg
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess