AI-Empowered Software-Defined WLANs

Autor/a

Bayhan, Suzan

Coronado, Estefanía

Riggio, Roberto

Thomas, Abin

Fecha de publicación

2021-05-03



Resumen

The complexity of wireless and mobile networks is growing at an unprecedented pace. This trend is set to make current network control and management techniques based on analytical models and simulations impractical, especially if combined with the data deluge expected from future applications like Augmented and Mixed Reality. This is especially true for Software-Defined WLANs (SD-WLANs). It is our standpoint that to tame this increase in complexity, future SD-WLANs must follow an Artificial Intelligence (AI) native approach. In this paper, we present aiOS, an AI-based platform for SD-WLANs control and management. Our proposal is aligned with the most recent trends in in-network AI pushed by ITU-T and with the architecture for disaggregated radio access networks pushed by O-RAN. We validate aiOS in a practical use case, namely frame size optimisation in SD-WLANs, and elaborate on the long term evolution, challenges, and scenarios for AI-assisted network automation in the wireless and mobile networking domain.

Tipo de documento

Artículo
Versión aceptada

Lengua

Inglés

Materias CDU

621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicaciones

Palabras clave

Software Networks; 5G / 6G & Internet of Things; Artificial Intelligence & Big Data

Páginas

7 p.

Publicado por

IEEE

Colección

Volume 59; Issue 3

Es versión de

IEEE Communications Magazine

Documentos

commag2021_ai_wifi_FINAL.pdf

7.041Mb

 

Derechos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)