Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems

dc.contributor.author
Escrig, Josep
dc.contributor.author
Fischer, Oliver J.
dc.contributor.author
Gomes, Rachel L.
dc.contributor.author
Porcu, Laura
dc.contributor.author
Watson, Nicholas
dc.date.accessioned
2023-02-28T16:40:28Z
dc.date.accessioned
2024-12-09T15:44:07Z
dc.date.available
2023-02-28T16:40:28Z
dc.date.available
2024-12-09T15:44:07Z
dc.date.issued
2020-09-02
dc.identifier.uri
http://hdl.handle.net/2072/531555
dc.description.abstract
The increasing availability of data, due to the adoption of low-cost industrial internet of things technologies, coupled with increasing processing power from cloud computing, is fuelling increase use of data-driven models in manufacturing. Utilising case studies from the food and drink industry and waste management industry, the considerations and challenges faced when developing data-driven models for manufacturing systems are explored. Ensuring a high-quality set of model development data that accurately represents the manufacturing system is key to the successful development of a data-driven model. The cross-industry standard process for data mining (CRISP-DM) framework is used to provide a reference at to what stage process manufacturers will face unique considerations and challenges when developing a data-driven model. This paper then explores how data-driven models can be utilised to characterise process streams and support the implementation of the circular economy principals, process resilience and waste valorisation.
dc.format.extent
14 p.
cat
dc.language.iso
eng
cat
dc.publisher
Elsevier Ltd
cat
dc.relation.ispartof
Computers and Chemical Engineering
cat
dc.relation.ispartofseries
Volume 140;106881
dc.rights
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights
© 2020 The Authors. Published by Elsevier Ltd
dc.source
RECERCAT (Dipòsit de la Recerca de Catalunya)
dc.subject.other
Artificial Intelligence & Big Data
cat
dc.subject.other
Industry
cat
dc.subject.other
Distributed Artificial Intelligence
cat
dc.title
Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems
cat
dc.type
info:eu-repo/semantics/article
cat
dc.type
info:eu-repo/semantics/publishedVersion
cat
dc.subject.udc
621.3
cat
dc.embargo.terms
cap
cat
dc.identifier.doi
10.1016/j.compchemeng.2020.106881
cat
dc.rights.accessLevel
info:eu-repo/semantics/openAccess


Documents

1-s2.0-S0098135419308373-main.pdf

1.989Mb PDF

This item appears in the following Collection(s)