Considerations, challenges and opportunities when developing data-driven models for process manufacturing systems

Autor/a

Escrig, Josep

Fischer, Oliver J.

Gomes, Rachel L.

Porcu, Laura

Watson, Nicholas

Fecha de publicación

2020-09-02



Resumen

The increasing availability of data, due to the adoption of low-cost industrial internet of things technologies, coupled with increasing processing power from cloud computing, is fuelling increase use of data-driven models in manufacturing. Utilising case studies from the food and drink industry and waste management industry, the considerations and challenges faced when developing data-driven models for manufacturing systems are explored. Ensuring a high-quality set of model development data that accurately represents the manufacturing system is key to the successful development of a data-driven model. The cross-industry standard process for data mining (CRISP-DM) framework is used to provide a reference at to what stage process manufacturers will face unique considerations and challenges when developing a data-driven model. This paper then explores how data-driven models can be utilised to characterise process streams and support the implementation of the circular economy principals, process resilience and waste valorisation.

Tipo de documento

Artículo
Versión publicada

Lengua

Inglés

Materias CDU

621.3 - Ingeniería eléctrica. Electrotecnia. Telecomunicaciones

Palabras clave

Artificial Intelligence & Big Data; Industry; Distributed Artificial Intelligence

Páginas

14 p.

Publicado por

Elsevier Ltd

Colección

Volume 140; 106881

Es versión de

Computers and Chemical Engineering

Documentos

1-s2.0-S0098135419308373-main.pdf

1.989Mb

 

Derechos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

© 2020 The Authors. Published by Elsevier Ltd

Este ítem aparece en la(s) siguiente(s) colección(ones)