Low time complexity algorithms for path computation in Cayley Graphs

Author

Aguirre Guerrero, Daniela

Ducoffe, Guillaume

Fàbrega i Soler, Lluís

Vilà Talleda, Pere

Coudert, David

Publication date

2019-04-30



Abstract

We study the problem of path computation in Cayley Graphs (CG) from an approach of word processing in groups. This approach consists in encoding the topological structure of CG in an automaton called Diff, then techniques of word processing are applied for computing the shortest paths. We present algorithms for computing the K-shortest paths, the shortest disjoint paths and the shortest path avoiding a set of nodes and edges. For any CG with diameter D, the time complexity of the proposed algorithms is O(KD|Diff|), where |Diff| denotes the size of Diff. We show that our proposal outperforms the state of art of topology-agnostic algorithms for disjoint shortest paths and stays competitive with respect to proposals for specific families of CG. Therefore, the proposed algorithms set a base in the design of adaptive and low-complexity routing schemes for networks whose interconnections are defined by CG

Document Type

Article
Accepted version
peer-reviewed

Language

English

Subjects and keywords

Algorismes computacionals; Computer algorithms; Algorismes de grafs; Graph algorithms

Publisher

Elsevier

Related items

info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2018.12.005

info:eu-repo/semantics/altIdentifier/issn/0166-218X

info:eu-repo/semantics/altIdentifier/eissn/1872-6771

Rights

Tots els drets reservats

This item appears in the following Collection(s)