Autor/a

Aguirre Guerrero, Daniela

Ducoffe, Guillaume

Fàbrega i Soler, Lluís

Vilà Talleda, Pere

Coudert, David

Fecha de publicación

2019-04-30



Resumen

We study the problem of path computation in Cayley Graphs (CG) from an approach of word processing in groups. This approach consists in encoding the topological structure of CG in an automaton called Diff, then techniques of word processing are applied for computing the shortest paths. We present algorithms for computing the K-shortest paths, the shortest disjoint paths and the shortest path avoiding a set of nodes and edges. For any CG with diameter D, the time complexity of the proposed algorithms is O(KD|Diff|), where |Diff| denotes the size of Diff. We show that our proposal outperforms the state of art of topology-agnostic algorithms for disjoint shortest paths and stays competitive with respect to proposals for specific families of CG. Therefore, the proposed algorithms set a base in the design of adaptive and low-complexity routing schemes for networks whose interconnections are defined by CG

Tipo de documento

Artículo
Versión aceptada
peer-reviewed

Lengua

Inglés

Materias y palabras clave

Algorismes computacionals; Computer algorithms; Algorismes de grafs; Graph algorithms

Publicado por

Elsevier

Documentos relacionados

info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2018.12.005

info:eu-repo/semantics/altIdentifier/issn/0166-218X

info:eu-repo/semantics/altIdentifier/eissn/1872-6771

Derechos

Tots els drets reservats

Este ítem aparece en la(s) siguiente(s) colección(ones)