Autor/a

Aguirre Guerrero, Daniela

Ducoffe, Guillaume

Fàbrega i Soler, Lluís

Vilà Talleda, Pere

Coudert, David

Data de publicació

2019-04-30



Resum

We study the problem of path computation in Cayley Graphs (CG) from an approach of word processing in groups. This approach consists in encoding the topological structure of CG in an automaton called Diff, then techniques of word processing are applied for computing the shortest paths. We present algorithms for computing the K-shortest paths, the shortest disjoint paths and the shortest path avoiding a set of nodes and edges. For any CG with diameter D, the time complexity of the proposed algorithms is O(KD|Diff|), where |Diff| denotes the size of Diff. We show that our proposal outperforms the state of art of topology-agnostic algorithms for disjoint shortest paths and stays competitive with respect to proposals for specific families of CG. Therefore, the proposed algorithms set a base in the design of adaptive and low-complexity routing schemes for networks whose interconnections are defined by CG

Tipus de document

Article
Versió acceptada
peer-reviewed

Llengua

Anglès

Matèries i paraules clau

Algorismes computacionals; Computer algorithms; Algorismes de grafs; Graph algorithms

Publicat per

Elsevier

Documents relacionats

info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2018.12.005

info:eu-repo/semantics/altIdentifier/issn/0166-218X

info:eu-repo/semantics/altIdentifier/eissn/1872-6771

Drets

Tots els drets reservats

Aquest element apareix en la col·lecció o col·leccions següent(s)