A Folk Theorem for Games when Frequent Monitoring Decreases Noise

Author

Osório Costa, Antonio Miguel

Other authors

Universitat Rovira i Virgili. Departament d'Economia

Universitat Rovira i Virgili. Centre de Recerca en Economia Industrial i Economia Pública

Publication date

2011



Abstract

This paper studies frequent monitoring in an infinitely repeated game with imperfect public information and discounting, where players observe the state of a continuous time Brownian process at moments in time of length _. It shows that a limit folk theorem can be achieved with imperfect public monitoring when players monitor each other at the highest frequency, i.e., _. The approach assumes that the expected joint output depends exclusively on the action profile simultaneously and privately decided by the players at the beginning of each period of the game, but not on _. The strong decreasing effect on the expected immediate gains from deviation when the interval between actions shrinks, and the associated increase precision of the public signals, make the result possible in the limit. JEL: C72/73, D82, L20. KEYWORDS: Repeated Games, Frequent Monitoring, Public Monitoring, Brownian Motion.

Document Type

Working document

Language

English

CDU Subject

33 - Economics. Economic science; 65 - Communication and transport industries. Accountancy. Business management. Public relations

Subject

Teoria de jocs

Pages

30 p.

Publisher

Universitat Rovira i Virgili. Departament d'Economia

Collection

Documents de treball del Departament d'Economia; 2011-30

Documents

201130.pdf

577.4Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

This item appears in the following Collection(s)