Exact Derivation of a Finite-Size Scaling Law and Corrections to Scaling in the Geometric Galton-Watson Process

Author

Garcia-Millan, R.

Font-Clos, F.

Publication date

2016-01-01



Abstract

The theory of finite-size scaling explains how the singular behavior of thermodynamic quantities in the critical point of a phase transition emerges when the size of the system becomes infinite. Usually, this theory is presented in a phenomenological way. Here, we exactly demonstrate the existence of a finite-size scaling law for the Galton-Watson branching processes when the number of offsprings of each individual follows either a geometric distribution or a generalized geometric distribution. We also derive the corrections to scaling and the limits of validity of the finite-size scaling law away the critical point. A mapping between branching processes and random walks allows us to establish that these results also hold for the latter case, for which the order parameter turns out to be the probability of hitting a distant boundary.

Document Type

Article
Published version

Language

English

CDU Subject

51 - Mathematics

Subject

Matemàtiques

Pages

17 p.

Version of

PLoS ONE

Documents

ACorral27MaRcAt.pdf

673.9Kb

 

Rights

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

This item appears in the following Collection(s)

CRM Articles [656]