Exact Derivation of a Finite-Size Scaling Law and Corrections to Scaling in the Geometric Galton-Watson Process

Autor/a

Garcia-Millan, R.

Font-Clos, F.

Fecha de publicación

2016-01-01



Resumen

The theory of finite-size scaling explains how the singular behavior of thermodynamic quantities in the critical point of a phase transition emerges when the size of the system becomes infinite. Usually, this theory is presented in a phenomenological way. Here, we exactly demonstrate the existence of a finite-size scaling law for the Galton-Watson branching processes when the number of offsprings of each individual follows either a geometric distribution or a generalized geometric distribution. We also derive the corrections to scaling and the limits of validity of the finite-size scaling law away the critical point. A mapping between branching processes and random walks allows us to establish that these results also hold for the latter case, for which the order parameter turns out to be the probability of hitting a distant boundary.

Tipo de documento

Artículo
Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Matemàtiques

Páginas

17 p.

Es versión de

PLoS ONE

Documentos

ACorral27MaRcAt.pdf

673.9Kb

 

Derechos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]