On the Volume Elements of a Manifold with Transverse Zeroes

Autor/a

Cardona, Robert

Miranda, Eva

Data de publicació

2019-04-01



Resum

Moser proved in 1965 in his seminal paper [15] that two volume forms on a compact manifold can be conjugated by a diffeomorphism, that is to say they are equivalent, if and only if their associated cohomology classes in the top cohomology group of a manifold coincide. In particular, this yields a classification of compact symplectic surfaces in terms of De Rham cohomology. In this paper we generalize these results for volume forms admitting transversal zeroes. In this case there is also a cohomology capturing the classification: the relative cohomology with respect to the critical hypersurface. We compare this classification scheme with the classification of Poisson structures on surfaces which are symplectic away from a hypersurface where they fulfill a transversality assumption (b-Poisson structures). We do this using the desingularization technique introduced in [10] and extend it to bm-Nambu structures.

Tipus de document

Article
Esborrany

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Matemàtiques

Pàgines

197 p.

És versió de

Regular and Chaotic Dynamics (Springer)

Documents

1812.03800.pdf

339.9Kb

 

Drets

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]