Contractive probability metrics and asymptotic behavior of dissipative kinetic equations

Autor/a

Carrillo, José A.

Toscani, Giuseppe

Otros/as autores/as

Centre de Recerca Matemàtica, 730

Fecha de publicación

2007-01



Resumen

The present notes are intended to present a detailed review of the existing results in dissipative kinetic theory which make use of the contraction properties of two main families of probability metrics: optimal mass transport and Fourier-based metrics. The first part of the notes is devoted to a self-consistent summary and presentation of the properties of both probability metrics, including new aspects on the relationships between them and other metrics of wide use in probability theory. These results are of independent interest with potential use in other contexts in Partial Differential Equations and Probability Theory. The second part of the notes makes a different presentation of the asymptotic behavior of Inelastic Maxwell Models than the one presented in the literature and it shows a new example of application: particle's bath heating. We show how starting from the contraction properties in probability metrics, one can deduce the existence, uniqueness and asymptotic stability in classical spaces. A global strategy with this aim is set up and applied in two dissipative models.

Tipo de documento

Edición preliminar

Lengua

Inglés

Materias CDU

51 - Matemáticas; 517 - Análisis

Palabras clave

Probabilitats, Mesures de; Equacions diferencials parcials; Maxwell-boltzmann, Llei de distribució de

Páginas

116

634416 bytes

Publicado por

Centre de Recerca Matemàtica

Colección

Prepublicacions del Centre de Recerca Matemàtica; 730

Documentos

Pr730.pdf

619.5Kb

 

Derechos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Este ítem aparece en la(s) siguiente(s) colección(ones)