Why are inner planets not inclined?

Autor/a

Clarke, M.

Fejoz, J.

Guàrdia, M.

Data de publicació

2024-09-19



Resum

Poincaré's work more than one century ago, or Laskar's numerical simulations from the 1990's on, have irrevocably impaired the long-held belief that the Solar System should be stable. But mathematical mechanisms explaining this instability have remained mysterious. In 1968, Arnold conjectured the existence of Arnold diffusion in celestial mechanics. We prove Arnold's conjecture in the planetary spatial 4-body problem as well as in the corresponding hierarchical problem (where the bodies are increasingly separated), and show that this diffusion leads, on a long time interval, to some large-scale instability. Along the diffusive orbits, the mutual inclination of the two inner planets is close to pi/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi /2$\end{document}, which hints at why even marginal stability in planetary systems may exist only when inner planets are not inclined. More precisely, consider the normalised angular momentum of the second planet, obtained by rescaling the angular momentum by the square root of its semimajor axis and by an adequate mass factor (its direction and norm give the plane of revolution and the eccentricity of the second planet). It is a vector of the unit 3-ball. We show that any finite sequence in this ball may be realised, up to an arbitrary precision, as a sequence of values of the normalised angular momentum in the 4-body problem. For example, the second planet may flip from prograde nearly horizontal revolutions to retrograde ones. As a consequence of the proof, the non-recurrent set of any finite-order secular normal form accumulates on circular motions - a weak form of a celebrated conjecture of Herman.

Tipus de document

Article

Versió del document

Versió publicada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques; 52 - Astronomia. Astrofísica. Investigació espacial. Geodèsia; 53 - Física

Paraules clau

Quasi-Periodic Solutions; Arnold Diffusion; Hamiltonian-Systems

Pàgines

98 p.

Publicat per

Springer

Nota

The version of record of this article, first published in Publications mathématiques de l'IHÉS, is available online at Publisher’s website: http://dx.doi.org/10.1007/s10240-024-00151-z

És versió de

Publications mathématiques de l'IHÉS

Documents

Why_are_inner_planets_not_inclined.pdf

1.396Mb

 

Drets

Attribution-NonCommercial-NoDerivatives 4.0 International

Attribution-NonCommercial-NoDerivatives 4.0 International

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]