Why are inner planets not inclined?

Autor/a

Clarke, M.

Fejoz, J.

Guàrdia, M.

Fecha de publicación

2024-09-19



Resumen

Poincaré's work more than one century ago, or Laskar's numerical simulations from the 1990's on, have irrevocably impaired the long-held belief that the Solar System should be stable. But mathematical mechanisms explaining this instability have remained mysterious. In 1968, Arnold conjectured the existence of Arnold diffusion in celestial mechanics. We prove Arnold's conjecture in the planetary spatial 4-body problem as well as in the corresponding hierarchical problem (where the bodies are increasingly separated), and show that this diffusion leads, on a long time interval, to some large-scale instability. Along the diffusive orbits, the mutual inclination of the two inner planets is close to pi/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi /2$\end{document}, which hints at why even marginal stability in planetary systems may exist only when inner planets are not inclined. More precisely, consider the normalised angular momentum of the second planet, obtained by rescaling the angular momentum by the square root of its semimajor axis and by an adequate mass factor (its direction and norm give the plane of revolution and the eccentricity of the second planet). It is a vector of the unit 3-ball. We show that any finite sequence in this ball may be realised, up to an arbitrary precision, as a sequence of values of the normalised angular momentum in the 4-body problem. For example, the second planet may flip from prograde nearly horizontal revolutions to retrograde ones. As a consequence of the proof, the non-recurrent set of any finite-order secular normal form accumulates on circular motions - a weak form of a celebrated conjecture of Herman.

Tipo de documento

Artículo

Versión del documento

Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas; 52 - Astronomía. Astrofísica. Investigación espacial. Geodesia; 53 - Física

Palabras clave

Quasi-Periodic Solutions; Arnold Diffusion; Hamiltonian-Systems

Páginas

98 p.

Publicado por

Springer

Nota

The version of record of this article, first published in Publications mathématiques de l'IHÉS, is available online at Publisher’s website: http://dx.doi.org/10.1007/s10240-024-00151-z

Es versión de

Publications mathématiques de l'IHÉS

Documentos

Why_are_inner_planets_not_inclined.pdf

1.396Mb

 

Derechos

Attribution-NonCommercial-NoDerivatives 4.0 International

Attribution-NonCommercial-NoDerivatives 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]