Semiconvexity estimates for nonlinear integro-differential equations

Autor/a

Ros-Oton, X.

Torres-Latorre, C.

Weidner, M.

Data de publicació

2024-11-15



Resum

In this paper we establish for the first time local semiconvexity estimates for fully nonlinear equations and for obstacle problems driven by integro-differential operators with general kernels. Our proof is based on the Bernstein technique, which we develop for a natural class of nonlocal operators and consider to be of independent interest. In particular, we solve an open problem from Cabr & eacute;-Dipierro-Valdinoci. As an application of our result, we establish optimal regularity estimates and smoothness of the free boundary near regular points for the nonlocal obstacle problem on domains. Finally, we also extend the Bernstein technique to parabolic equations and nonsymmetric operators.

Tipus de document

Article

Versió del document

Versió publicada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Nonlocal Elliptic-Equations; Regularity Theory; Semiconvexity estimates

Pàgines

56 p.

Publicat per

Wiley

És versió de

Communications on Pure and Applied Mathematics

Documents

Comm Pure Appl Math - 2024 - Ros‐Oton - Semiconvexity estimates for nonlinear integro‐differential equations.pdf

496.6Kb

 

Drets

(c) 2024 The Author(s)

Attribution-NonCommercial-NoDerivatives 4.0 International

(c) 2024 The Author(s)

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]