Semiconvexity estimates for nonlinear integro-differential equations

Autor/a

Ros-Oton, X.

Torres-Latorre, C.

Weidner, M.

Fecha de publicación

2024-11-15



Resumen

In this paper we establish for the first time local semiconvexity estimates for fully nonlinear equations and for obstacle problems driven by integro-differential operators with general kernels. Our proof is based on the Bernstein technique, which we develop for a natural class of nonlocal operators and consider to be of independent interest. In particular, we solve an open problem from Cabr & eacute;-Dipierro-Valdinoci. As an application of our result, we establish optimal regularity estimates and smoothness of the free boundary near regular points for the nonlocal obstacle problem on domains. Finally, we also extend the Bernstein technique to parabolic equations and nonsymmetric operators.

Tipo de documento

Artículo

Versión del documento

Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Nonlocal Elliptic-Equations; Regularity Theory; Semiconvexity estimates

Páginas

56 p.

Publicado por

Wiley

Es versión de

Communications on Pure and Applied Mathematics

Documentos

Comm Pure Appl Math - 2024 - Ros‐Oton - Semiconvexity estimates for nonlinear integro‐differential equations.pdf

496.6Kb

 

Derechos

(c) 2024 The Author(s)

Attribution-NonCommercial-NoDerivatives 4.0 International

(c) 2024 The Author(s)

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]