Universal finite-time scaling in the transcritical, saddle-node, and pitchfork discrete and continuous bifurcations

Autor/a

Corral, Alvaro ORCID

Data de publicació

2025-01-03



Resum

Bifurcations are one of the most remarkable features of dynamical systems. Corral et al. [Sci. Rep. 8(11783), 2018] showed the existence of scaling laws describing the transient (finite-time) dynamics in discrete dynamical systems close to a bifurcation point, following an approach that was valid for the transcritical as well as for the saddle-node bifurcations. We reformulate those previous results and extend them to other discrete and continuous bifurcations, remarkably the pitchfork bifurcation. In contrast to the previous work, we obtain a finite-time bifurcation diagram directly from the scaling law, without a necessary knowledge of the stable fixed point. The derived scaling laws provide a very good and universal description of the transient behavior of the systems for long times and close to the bifurcation points.

Tipus de document

Article

Versió del document

Versió acceptada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Bifurcations; Dynamical Systems

Pàgines

24 p.

Publicat per

American Institute of Physics

És versió de

Chaos: An Interdisciplinary Journal of Nonlinear Science

Documents

Universal finite-time scaling.pdf

1.395Mb

 

Drets

Attribution 4.0 International

Attribution 4.0 International

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]