Universal finite-time scaling in the transcritical, saddle-node, and pitchfork discrete and continuous bifurcations

Autor/a

Corral, Alvaro ORCID

Fecha de publicación

2025-01-03



Resumen

Bifurcations are one of the most remarkable features of dynamical systems. Corral et al. [Sci. Rep. 8(11783), 2018] showed the existence of scaling laws describing the transient (finite-time) dynamics in discrete dynamical systems close to a bifurcation point, following an approach that was valid for the transcritical as well as for the saddle-node bifurcations. We reformulate those previous results and extend them to other discrete and continuous bifurcations, remarkably the pitchfork bifurcation. In contrast to the previous work, we obtain a finite-time bifurcation diagram directly from the scaling law, without a necessary knowledge of the stable fixed point. The derived scaling laws provide a very good and universal description of the transient behavior of the systems for long times and close to the bifurcation points.

Tipo de documento

Artículo

Versión del documento

Versión aceptada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Bifurcations; Dynamical Systems

Páginas

24 p.

Publicado por

American Institute of Physics

Es versión de

Chaos: An Interdisciplinary Journal of Nonlinear Science

Documentos

Universal finite-time scaling.pdf

1.395Mb

 

Derechos

Attribution 4.0 International

Attribution 4.0 International

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]