Ergodic properties of infinite extension of symmetric interval exchange transformations

Autor/a

Berk, P.

Trujillo, Frank ORCID

Wu, H.

Data de publicació

2025-06-11



Resum

We prove that skew products with the cocycle given by the function f(x) = a(x − 1/2) with a ̸= 0 are ergodic for every ergodic symmetric IET in the base, thus giving the full characterization of ergodic extensions in this family. Moreover, we prove that under an additional natural assumption of unique ergodicity on the IET, we can replace f with any differentiable function with a non-zero sum of jumps. Finally, by considering weakly mixing IETs instead of just ergodic, we show that the skew products with cocycle given by f have infinite ergodic index.

Tipus de document

Article

Versió del document

Versió publicada

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Interval exchange transformations; Ergodicity of systems preserving infinite measures

Pàgines

29 p.

Publicat per

École polytechnique

És versió de

Journal de l’École polytechnique — Mathématiques

Documents

Ergodic properties of infinite extension of symmetric interval exchange transformations.pdf

1.005Mb

 

Drets

© Les auteurs, 2025.

Attribution 4.0 International

© Les auteurs, 2025.

Aquest element apareix en la col·lecció o col·leccions següent(s)

CRM Articles [656]