Ergodic properties of infinite extension of symmetric interval exchange transformations

Autor/a

Berk, P.

Trujillo, Frank ORCID

Wu, H.

Fecha de publicación

2025-06-11



Resumen

We prove that skew products with the cocycle given by the function f(x) = a(x − 1/2) with a ̸= 0 are ergodic for every ergodic symmetric IET in the base, thus giving the full characterization of ergodic extensions in this family. Moreover, we prove that under an additional natural assumption of unique ergodicity on the IET, we can replace f with any differentiable function with a non-zero sum of jumps. Finally, by considering weakly mixing IETs instead of just ergodic, we show that the skew products with cocycle given by f have infinite ergodic index.

Tipo de documento

Artículo

Versión del documento

Versión publicada

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Interval exchange transformations; Ergodicity of systems preserving infinite measures

Páginas

29 p.

Publicado por

École polytechnique

Es versión de

Journal de l’École polytechnique — Mathématiques

Documentos

Ergodic properties of infinite extension of symmetric interval exchange transformations.pdf

1.005Mb

 

Derechos

© Les auteurs, 2025.

Attribution 4.0 International

© Les auteurs, 2025.

Este ítem aparece en la(s) siguiente(s) colección(ones)

CRM Articles [656]