The increasing availability of data, due to the adoption of low-cost industrial internet of things technologies, coupled with increasing processing power from cloud computing, is fuelling increase use of data-driven models in manufacturing. Utilising case studies from the food and drink industry and waste management industry, the considerations and challenges faced when developing data-driven models for manufacturing systems are explored. Ensuring a high-quality set of model development data that accurately represents the manufacturing system is key to the successful development of a data-driven model. The cross-industry standard process for data mining (CRISP-DM) framework is used to provide a reference at to what stage process manufacturers will face unique considerations and challenges when developing a data-driven model. This paper then explores how data-driven models can be utilised to characterise process streams and support the implementation of the circular economy principals, process resilience and waste valorisation.
English
621.3 Electrical engineering
Artificial Intelligence & Big Data; Industry; Distributed Artificial Intelligence
14 p.
Elsevier Ltd
Volume 140; 106881
Computers and Chemical Engineering
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:http://creativecommons.org/licenses/by-nc-nd/4.0/
© 2020 The Authors. Published by Elsevier Ltd
Journal articles [61]