Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein Kinase C-dependent modulation

Autor/a

Martínez Mármol, Ramón

Styrczewska, Katarzyna

Pérez Verdaguer, Mireia

Vallejo Gracia, Albert

Comes i Beltrán, Núria

Sorkin, Alexander

Felipe Campo, Antonio

Fecha de publicación

2018-03-08T15:02:14Z

2018-03-08T15:02:14Z

2017-02-10

2018-03-08T15:02:14Z

Resumen

The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca2+ -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytic event that targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. Postsynaptic density protein 95 (PSD-95), a member of the MAGUK family, recruits Kv1.3 into lipid-raft microdomains and protects the channel against ubiquitination and endocytosis. Therefore, the Kv1.3/PSD-95 association fine-tunes the anti-inflammatory response in leukocytes. Because Kv1.3 is a promising multi-therapeutic target against human pathologies, our results have physiological relevance. In addition, this work elucidates the ADO-dependent PKC-mediated molecular mechanism that triggers immunomodulation by targeting Kv1.3 in leukocytes.

Tipo de documento

Artículo
Versión publicada

Lengua

Inglés

Materias y palabras clave

Sistema nerviós; Ubiqüitina; Nervous system; Ubiquitin

Publicado por

Nature Publishing Group

Documentos relacionados

Reproducció del document publicat a: https://doi.org/10.1038/srep42395

Scientific Reports, 2017, vol. 7, num. 42395

https://doi.org/10.1038/srep42395

Derechos

cc-by (c) Martínez Mármol, Ramón et al., 2017

http://creativecommons.org/licenses/by/3.0/es