Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge

Autor/a

Bernal, Jorge

Tajbakhsh, Nima

Sánchez, F. Javier

Matuszewski, Bogdan J.

Chen, Hao

Yu, Lequan

Angermann, Quentin

Romain, Olivier

Rustad, Bjorn

Balasingham, Ilangko

Pogorelov, Konstantin

Choi, Sungbin

Debard, Quentin

Maier-Hein, Lena

Speidel, Stefanie

Stoyanov, Danail

Brandao, Patrick

Cordova, Henry

Sánchez Montes, Cristina

Gurudu, Suryakanth R.

Fernández Esparrach, Glòria

Dray, Xavier

Liang, Jianming

Histace, Aymeric

Data de publicació

2018-06-29T17:26:02Z

2018-06-29T17:26:02Z

2017-06

2018-06-29T17:26:03Z

Resum

Colonoscopy is the gold standard for colon cancer screening though some polyps are still missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection sub-challenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks are the state of the art. Nevertheless, it is also demonstrated that combining different methodologies can lead to an improved overall performance.

Tipus de document

Article
Versió acceptada

Llengua

Anglès

Matèries i paraules clau

Colonoscòpia; Càncer colorectal; Endoscòpia; Colonoscopy; Colorectal cancer; Endoscopy

Publicat per

Institute of Electrical and Electronics Engineers (IEEE)

Documents relacionats

Versió postprint del document publicat a: https://doi.org/10.1109/TMI.2017.2664042

IEEE Transactions on Medical Imaging, 2017, vol. 36, num. 6, p. 1231-1249

https://doi.org/10.1109/TMI.2017.2664042

Drets

(c) Institute of Electrical and Electronics Engineers (IEEE), 2017

Aquest element apareix en la col·lecció o col·leccions següent(s)