Rigidity of immersed submanifolds in a hyperbolic space

Autor/a

THAC DUNG, N.

Data de publicació

2013-01-01



Resum

Let \(M^{n}\), \(n \geq 5\) be a complete noncompact sub-manifold immersed in \(\mathbb{H}^{n+p}\). We will prove that there exist certain positive constants \(\alpha\), \(C\) such that if \(||H|| \leq \alpha\) and the total scalar curvature \(||A||_{n} < C\) then \(M\) does not admit any nonconstant harmonic function \(u\) with finite energy. Excepting these two conditions, there is no more additional condition on the curvature. Moreover, in the lower dimensional case, namely, \(2 \leq n \leq 5\), we show that there exist two certain positive constants \(0 < \delta \leq 1), and \(\beta\) depending only on \(\delta\) and the first eigenvalue \(\lambda_{1}(M)\) of Laplacian acting on \(M\) such that if \(M\) satisfies a (\(\delta\)-SC) condition and \(\lambda_{1}(M)\) has a lower bound then \(H^{1}(L^{2\beta}(M)) = 0\). Again, we do not need to have any additional condition on the curvature.

Tipus de document

Edició preliminar

Llengua

Anglès

Matèries CDU

51 - Matemàtiques

Paraules clau

Matemàtiques

Pàgines

16

És versió de

CRM Preprints

Documents

Pr1158MaRcAt.pdf

399.1Kb

 

Aquest element apareix en la col·lecció o col·leccions següent(s)