Rigidity of immersed submanifolds in a hyperbolic space

Autor/a

THAC DUNG, N.

Fecha de publicación

2013-01-01



Resumen

Let \(M^{n}\), \(n \geq 5\) be a complete noncompact sub-manifold immersed in \(\mathbb{H}^{n+p}\). We will prove that there exist certain positive constants \(\alpha\), \(C\) such that if \(||H|| \leq \alpha\) and the total scalar curvature \(||A||_{n} < C\) then \(M\) does not admit any nonconstant harmonic function \(u\) with finite energy. Excepting these two conditions, there is no more additional condition on the curvature. Moreover, in the lower dimensional case, namely, \(2 \leq n \leq 5\), we show that there exist two certain positive constants \(0 < \delta \leq 1), and \(\beta\) depending only on \(\delta\) and the first eigenvalue \(\lambda_{1}(M)\) of Laplacian acting on \(M\) such that if \(M\) satisfies a (\(\delta\)-SC) condition and \(\lambda_{1}(M)\) has a lower bound then \(H^{1}(L^{2\beta}(M)) = 0\). Again, we do not need to have any additional condition on the curvature.

Tipo de documento

Edición preliminar

Lengua

Inglés

Materias CDU

51 - Matemáticas

Palabras clave

Matemàtiques

Páginas

16

Es versión de

CRM Preprints

Documentos

Pr1158MaRcAt.pdf

399.1Kb

 

Este ítem aparece en la(s) siguiente(s) colección(ones)